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Abstract   
The present investigation encloses the started in the earlier papers [3] and [4] 

analytical evaluations of some kinds definite integrals. These solutions are necessary steps 
towards the revealing the mathematical structure of the dynamical equation, governing the 
properties of the stationary elliptical accretion discs, which apse lines of all orbits are in 
line with each other[5]. Though the considered here task, at first glance, may seem as a 
purely mathematical one, there are some restrictions of physical nature on the variables, 
entering as arguments into the integrals. In this paper we resolve analytically the following 
two definite integrals, including into their nominators (as a factor) the logarithmic function  
ln(1 + ecosφ). Concretely, we find in an explicit form the solutions of the integrals Li(e,ė) ≡ 
     2 π                                                                                                                                                                                                                                                                   

≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ]  – i dφ, (i = 0,…, 3),  
     0 
                                          2 π 
and Kj(e,ė) ≡ ∫[ln(1 + ecosφ)] [1 +(e – ė)cosφ] – j dφ, (j = 1, …, 5). 
                                          0                                                                                                                                                                                                                                         
Here we have used the following notations: φ is the azimuthal angle. The integration over φ 
from 0 to 2π means an averaging over the whole trajectory for each disc particle. Each 
such particle spirals inward to the center of the disc, moving on (quasi-) elliptical orbits 
with focal parameters p. These parameters p are allowed to vary for different elliptical 
orbits.In the our approach of computations, we treat e(u) and ė(u) as independent 
variables. The physically imposed restrictions (which, to some extend, lead to 
simplifications of the problems) are |e(u)| < 1,|ė(u)| < 1 and |e(u) – ė(u)| < 1 for all 
admitted values of u. That is to say, between the innermost and outermost orbits of the disc. 
Consequently, the established in this paper analytical solutions for the integrals Li(e,ė),  
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(i = 0,…, 3) and Kj(e,ė), (j = 1, …, 5), are, probably, not the most general ones, even in the 
domain of the real analysis. But nevertheless, they are sufficient for our aim to simplify the 
dynamical equation.     
 
 

1. Introduction  
   

Recent investigations ([1] – [4] and the references therein) have 
shown that it is possible to simplify to some extend the dynamical equation 
of the stationary elliptical accretion discs, having apse lines of the particle 
orbits in line with each other. This class of models, and, correspondingly, 
the accompanying their description dynamical equation, was developed by 
Lyubarskij et al. [5]. The simplifications, adopted for such models, allow to 
write the later equation as a second order ordinary differential equation. 
According to the theory of the ordinary differential equations, its solution 
exists and is unique. Of course, under given physically motivated suitable 
initial and boundary conditions. We underline that our up to now, and also 
forthcoming investigations are dealing only with the subclass of the 
stationary accretion flows. That is to say, for simplicity restrictions, we 
select only this part of the models, considered by Lyubarskij et al. [5], 
which does not concern the evolution of discs with the time. We shall not 
discuss here how the knowledge of the solutions for the stationary discs 
may hint the finding of the solutions of the dynamical equation in the non-
stationary case. The property, that the space structure of the elliptical 
accretion disc (having, as we just stressed above, characteristics which do 
not evolve with the time) is described mathematically by an ordinary 
differential equation, stimulates our intention to try to solve it analytically. 
Or simplify it, by means of analytical transformations, to a form, which 
reveals in a more clear way its physical and mathematical interpretation. 
This situation is, evidently, much more easy for an analytical treatment, than 
the case when the particle orbits of the elliptical discs do not share a 
common longitude of periastron. Then the dynamical equation, governing 
the structure of the accretion flow, is, generally speaking, a partial 
differential equation [6]. It is known that the partial differential equations, in 
contrast to the ordinary such, do not posses guarantees that their solutions 
are unique, if the later exist at all!   
       During the process of finding of linear relations between the terms, 
entering into the dynamical equation of the disc, we strike with the necessity 
to compute the following two kinds of integrals:  
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                                                        2 π                      

(1)        Li(e,ė) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ] – i  dφ  ;   i = 0, …, 3 ,  
                                                        0                   
                                                         2 π                 

(2)        Kj(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – j dφ ;   j = 1, …, 5 .  
                                                         0                       

In an earlier paper [4], we have already evaluated analytically the 
“initial” integrals L0(e), K0(e) and K1(e,ė), considered as starting points into 
the recurrence relations, which enable us to solve the integrals with i = 1, 2, 
3 and j = 2, …, 5. We rewrite here these solutions:  
(3)       L0(e) = – 2π(1 – e2) – 1/ 2ln{[1 + (1 – e2)1/ 2][2(1 – e2)] – 1};       ([4], equality (53)),     
(4)       K0(e) = 2π ln{[1 + (1 – e2)1/ 2]/2};     ([4], equality (54)),    
(5)      K1(e,ė) = 2π[1 – (e – ė)2] – 1/ 2ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 +  
             + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
             + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}(e – ė) – 2[1 – (1 – e2)1/ 2] – 1};       ([4], 
equality (116)).  

For further use, it is helpful also to adduce the definitions of the 
following three integrals Ai(e,ė), (i = 1, …, 5), Jj(e,ė), (j = 1, …, 4) and 
Hj(e,ė), (j = 1, …, 4):  
 

                                                         2 π        

(6)        Ai(e,ė) ≡ ∫[1 + (e – ė)cosφ] – i dφ ;    (i = 1, …, 5),      
                                                         0     

                                                       2 π                    

(7)        Jj(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – j dφ ;     (j = 1, …, 4),   
                                                       0 

                                                         2 π                          

(8)        Hj(e,ė) ≡ ∫(1 + ecosφ) – j[1 + (e – ė)cosφ] – 1 dφ ;     (j = 1, …, 4).  
                                                          0                            

The analytical evaluations of the later three integrals (6) – (8) were 
derived and discussed in paper [3]. It is worth to note, that the integration 
over the azimuthal angle φ in the above written integrals (1) – (8) is a 
consequence of the angle averaging over the each particle orbit in the 
interval φ  [0, 2π]. We have also to stress, that the applied in the next 
chapters approaches for analytical evaluations of the integrals Li(e,ė) and 
Kj(e,ė) are useful for higher integer values of the powers of the denominator 
[1 + (e – ė)cosφ]. That is to say, for i > 3, or j > 4. But we shall restrict us 
only to those generality levels, which are enough to solve the considered by 
us particular problem of analyzing the dynamical equation of the stationary 
elliptical accretion discs. We do not set ourselves as an object to solve the 
complete mathematical task for all i and j.    
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                                                                                                                                                                                                                                   2 π 
2. Analytical computation of the integral K2(e,ė) ≡ ∫[ln(1 +  
                                                                                                                                                                                                        0 
+ ecosφ)][1 + (e – ė)cosφ] – 2 dφ 

                                                                                                                                                                                                                       
 

It is appropriate to begin the evaluation of the integrals Kj(e,ė), (j =  
= 2, …, 5) (using correlation relations), from the integral K2(e,ė), not from 
the integral K5(e,ė). Hence, according to the definitions (2):   
                                                          2 π                          

(9)        K2(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 2 dφ =     
                                                           0                            
                                                                  2 π                     

             = – (e – ė) – 2∫[1 – (e – ė)2cos2φ][ln(1 + ecosφ)][1 + (e – ė)cosφ] – 2 dφ +   
                                                                   0                   
                                                            2 π                   

             + (e – ė) – 2∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 2 dφ –        
                                                             0                            
                                                           2 π                           

             – (e – ė) – 1∫(sinφ)[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 2 d[1 + (e – ė)cosφ] =  
                                                            0                       
                                                                                                                        2 π                
             = – (e – ė) – 2K1(e,ė) + (e – ė) – 2∫ln(1 + ecosφ) dφ – (e – ė) – 2K1(e,ė) + (e – ė) – 2K2(e,ė) –  
                                                                                                                         0                
                                                           2 π                   

             – (e – ė) – 2∫{[1 + (e – ė)cosφ] – 1}[1 + (e – ė)cosφ] – 1[ln(1 + ecosφ)] dφ +  
                                                            0                                 
                                                             2 π                        

            + [e/(e – ė)]∫(1 – cos2φ)(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 1 dφ = 
                                                             0                         

            = (e – ė) – 2[K2(e,ė) – K1(e,ė)] + {(e2 – 1)/[e(e – ė)]}J1(e,ė) + [e/(e – ė)]A1(e,ė) –  
                                                        2 π                   
            – (e – ė) – 2∫{[1 + (e – ė)cosφ] – 1}[1 + (e – ė)cosφ] – 1 dφ = (e – ė) – 2[K2(e,ė) – K1(e,ė)] + 
                                                         0                

            + {(e2 – 1)/[e(e – ė)]}J1(e,ė) + [e(e – ė)] – 1A1(e,ė) – 2π(e – ė) – 2 + (e – ė) – 2A1(e,ė).   
        

This relation gives the final expression for the integral K2(e,ė).Using 
the already computed expressions for K1(e,ė) (see equality (5)), J1(e,ė) (see 
equality (27) from paper [3]) and A1(e,ė) (see equality (7) from paper [3]), 
we are in a position to write the explicit analytical solution for K2(e,ė). 
Finally, we obtain that:   
(10)       K2(e,ė) = 2π[1 – (e – ė)2] – 3/ 2ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 +  
               + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
               + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}(e – ė) – 2[1 – (1 – e2)1/ 2] – 1} – 2πeė – 1[1 – (e – ė)2] – 1/ 2 +  

               + 2π(e – e3 – ė + e2ė)ė – 1(1 – e2) – 1/ 2[1 – (e – ė)2] – 1 + 2π[1 – (e – ė)2] – 1.   
We shall not perform here the tedious algebraic computations, 

proving in a rigorous mathematical manner, that the written above analytical 
solution (10) for the integral K2(e,ė) remains valid even in the cases, when 
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e(u), and/or e(u) – ė(u) are equal to zero. These particular values are 
preliminary excluded in the derivation of the equality (10). Because they 
enter as factors into the denominators of some of the intermediate terms. 
Correspondingly, this situation leads to the necessity to examinate the 
indicated cases in a separate way. The resolving of the designated problem 
may follow the analogous procedure, which is called to overcome such 
difficulties, appearing under the analytical solving of the integrals K1(e,ė), 
Li(e,ė), (i = 0, …, 3), Ai(e,ė), (i = 1,…, 5), Jj(e,ė), (j =1, …, 4), Hj(e,ė), (j = 
= 1, …, 4) (see papers [3] and [4]). Especially, the used approach is based 
on the application of the L’Hospital’s rule for resolving of indeterminacies 
of the type 0/0. We shall return later in this paper to the arising problem.   
 

                                                                                                                                                                                                                                    2 π 
3. Analytical computation of the integral K3(e,ė) ≡ ∫[ln(1 + ecosφ)][1 +  
                                                                                                                                                                                                        0   
+ (e – ė)cosφ] – 3 dφ            

                                                                                                                                                                                                                                              

Let us compute the integral K3(e,ė). According to the definition (2):   
                                                                                         2 π                 

(11)       K3(e,ė) = – (e – ė) – 2∫[1 – (e – ė)2cos2φ][ln(1 + ecosφ)][1 + (e – ė)cosφ] – 3 dφ +  
                                                                                      0 
                                                            2 π                            

               + (e – ė) – 2∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 3 dφ –  
                                                           0                                        
                                                            2 π    
               – (e – ė) – 1∫(sinφ)[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 3 d[1 + (e – ė)cosφ] = 
                                                            0 

                                                                                                             2 π 

               = – (e – ė) – 2K2(e,ė) + (e – ė) – 2∫{[1 + (e – ė)cosφ] – 1}[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 2 dφ + 
                                                                                                             0                            
                                                                                                                                                                                                                                                              │ 2 π 
               + (e – ė) – 2K3(e,ė) + [2(e – ė)] – 1{(sinφ)[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 2│ – 
                                                                                                                                                                                                                                                                            │ 0         
                                  2 π                                                                            2 π 
               – ∫(cosφ)[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 2 dφ + e∫(sin2φ)(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ} = 
                                  0                                                                                                                    0 
               = – (e – ė) – 2K2(e,ė) + (e – ė) – 2K1(e,ė) – (e – ė) – 2K2(e,ė) + (e – ė) – 2K3(e,ė) – [2(e – ė)2] – 1K1(e,ė) +  
                                                                                                                                        2 π                       
               + [2(e – ė)2] – 1K2(e,ė) + e[2(e – ė)] – 1∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ +  
                                                                                                                                         0              
                                                                        2 π                             
               + [2e(e – ė)] – 1∫[(1 – e2cos2φ) – 1](1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ =  
                                                                         0                             
                                                                                                                                                                                                    2 π 
                = (e – ė) – 2[K3(e,ė) – (3/2)K2(e,ė) + (1/2)K1(e,ė)] – (1 –  e2)[2e(e – ė)] – 1{∫[1 + (e – ė)cosφ] – 2 dφ – 
                                                                                                                                                                                                                         0              
                                                              2 π                        
               – [e/(e – ė)]∫{[1 + (e – ė)cosφ] – 1}(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ} +  
                                                               0                          
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                                                                  2 π                                                                                           2 π              
               + [2e(e – ė)] – 1∫[1 + (e – ė)cosφ] – 2 dφ – [2(e – ė)2] – 1∫{[1 + (e – ė)cosφ] – 1}[1 + (e – ė)cosφ] – 2 dφ = 
                                                                   0                                                                                               0                               
               = (e – ė) – 2{K3(e,ė) – (3/2)K2(e,ė) + (1/2)K1(e,ė) + [(1 + e2 – eė)/2]A2(e,ė) +  
                + [(1 – e2)/2][J1(e,ė) – J2(e,ė)] – (1/2)A1(e,ė)}.   

Transferring the unknown function K3(e,ė) from the right-hand-side 
to the left one into the above relation, we can write K3(e,ė) through the 
already known functions:  
(12)       K3(e,ė) = {2[1 – (e – ė)2]}– 1{3K2(e,ė) – K1(e,ė) – (1 + e2 – eė)A2(e,ė) +  
               + A1(e,ė) + (1 – e2)[J2(e,ė) – J1(e,ė)]}.   

In the above formula, functions K1(e,ė) and K2(e,ė) are given by the 
analytical solutions (5) and (10), respectively. The other integrals in the 
right-hand-side of (12) are evaluated in the earlier paper [3], as follows: 
A1(e,ė) – formula (7), A2(e,ė) – formula (8), J1(e,ė) – formula (27) and 
J2(e,ė) – formula (34). The numerations of the later formulas correspond to 
[3]. The substitution of these expressions into (12) gives the explicit form of 
the solution (12) as a function of the eccentricity e(u) and its derivative ė(u). 
After some simple algebraic transformations, we are in a position to write 
the final analytical solution for the integral K3(e,ė):   
(13)       K3(e,ė) = π[1 – (e – ė)2]}– 5/ 2(2 + e2 – 2eė + ė2)ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 + 
                + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
                + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}(e – ė) – 2[1 – (1 – e2)1/ 2] – 1} +  
               + π(– e2 + 2e4 – e6 – 2eė – 2e3ė + 4e5ė – 2e2ė2 – 6e4ė2 + 2eė3 + 4e3ė3 – e2ė4)ė – 2[1 – (e – ė)2] – 5/ 2 +  
               + π(e2 – 2e4 + e6 + 2eė + e3ė – 3e5ė – 3ė2 + 3e4ė2 + eė3 – e3ė3)ė – 2(1 – e2) – 1/ 2[1 – (e – ė)2] – 2 +  
               + 3π[1 – (e – ė)2] – 2.  
                                                                                                                                                                                                                       2 π 

4. Analytical expressions for the integrals K4(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + 
                                                                                                                                                                                                    0 
                                                                                                                           2 π 
+ (e – ė)cosφ] – 4 dφ   

       and K5(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 5 dφ                                                                   

 
                                                                                                                           0                                                                               

   

The computational procedure of the integrals K4(e,ė) and K5(e,ė) 
exactly resembles to that, which we described earlier in details, when we 
solved the integrals K2(e,ė) and K3(e,ė). As it can be established from these 
calculations, the applied approach is to develop the integrands from the 
corresponding definitions (2) in such a way that into the right-hand-side to 
appear the same integral, multiplied by a factor different from unity. The 
later condition is crucial for the method of computation to work, because the 
integral, for which we are seeking, may be transferred into the left-hand-side 
of the equality. The result will be that in the left we shall have only the 
unknown integral, multiplied by a factor different from zero. Into the right-
hand-side remain integrals of the same type (2), but with index j less then 
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that of the integral under resolving. The formers are already solved. This is 
essentially a recurrent procedure. Of course, into the right-hand-side also 
present integrals of the types Ai(e,ė) (6) and Jj(e,ė) (7), but their analytical 
expressions are successfully computed in an earlier paper [3]. Therefore, it 
is only a matter of tedious algebra to resolve analytically the integrals 
K4(e,ė) and K5(e,ė), starting directly from their definitions (2). For such 
reasons, we were motivated to skip here the detailed writing (as we have 
already done for K2(e,ė) and K3(e,ė)) of the intermediate steps, leading to 
the solutions of K4(e,ė) and K5(e,ė). We shall give only their expressions 
through the integrals  Kj(e,ė), (j = 1, 2, 3),  Ai(e,ė),  (i = 2, 3, 4)  and  Jj(e,ė),  
(j = 2, 3, 4), and the corresponding final analytical formulas for them. We 
underline that the analytical solution for Kj(e,ė), (j = 1, …, 5), Li(e,ė), (i = 
=1, 2, 3), Ai(e,ė), (i = 1, …, 5), Jj(e,ė), (j = 1, …, 4) and Hj(e,ė), (j = 1, …, 
4) are also tested, by means of numerical methods, for a dense enough two-
dimensional lattice with respect to (e, ė). In conclusion, we write down the 
following results:   
(14) K4(e,ė) = {3[1 – (e – ė)2]} – 1{5K3(e,ė) – 2K2(e,ė) – (1 + e2 – eė)A3(e,ė) + A2(e,ė) +  
                + (1 – e2)[J3(e,ė) – J2(e,ė)]}. 

It remains to substitute the corresponding analytical expressions for 
K3(e,ė) (formula (13)), K2(e,ė) (formula (10)), A2(e,ė) (formula (8) from 
[3]), A3(e,ė) (formula (16) from [3]), J2(e,ė) (formula (34) from [3]) and 
J3(e,ė) (formula (42) from [3]). The conclusive result from such complicated 
evaluation can be written as follows:  
(15)     K4(e,ė) = π(2 + 3e2 – 6eė + 3ė2)[1 – (e – ė)2] – 7/ 2ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 +  
              + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
              + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}(e – ė) – 2[1 – (1 – e2)1/ 2] – 1} +  
              + (π/3)(– 2e3 + 4e5 – 2e7 – 3e2ė – 5e4ė + 8e6ė – 6eė2 – 5e3ė2 – 12e5ė2 – 2ė3 +  
              + 9e2ė3 + 8e4ė3 – 3eė4 – 2e3ė4)ė – 3[1 – (e – ė)2] – 5/ 2 + (π/3)(2e3 – 6e5 + 6e7 – 2e9 + 3e2ė + 4e4ė –  
               – 17e6ė + 10e8ė + 6eė2 + e3ė2 + 13e5ė2 – 20e7ė2 – 11ė3 – 12e2ė3 + 3e4ė3 + 20e6ė3 + 17eė4 –  
               – 7e3ė4 – 10e5ė4 – 4ė5 + 2e2ė5 + 2e4ė5)ė – 3(1 – e2) – 1/ 2[1 – (e – ė)2] – 3 + (2π/3)[1 – (e – ė)2] – 5/ 2 + 
               + (π/3)(11 + 4e2 – 8eė + 4ė2)[1 – (e – ė)2] – 3.   

The explicit form of the integral K5(e,ė), as a function of the 
eccentricity e(u) and its derivative ė(u), may be written in a similar way. At 
first, the direct processing of the definition (2) for the integral K5(e,ė) leads 
to the intermediate evaluation for K5(e,ė), analogous to the relation (14) for 
K4(e,ė):    
(16)       K5(e,ė) = {4[1 – (e – ė)2]}– 1[7K4(e,ė) – 3K3(e,ė) + (e – ė)(1 – e2)e – 1J4(e,ė) +  
               + A3(e,ė) – (2e – ė)e – 1A4(e,ė)].  

Like to the previous case above, the substitution into the relation 
(16) of the analytical solutions for K4(e,ė) (formula (15)), K3(e,ė) (formula 
(13)), A3(e,ė) (formula (16) from [3]), A4(e,ė) (formula (9) from [3]) and 
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J4(e,ė) (formula (47) from [3]), gives, after some tedious algebra, the final 
explicit analytical evaluation:    
(17)      K5(e,ė) = (π/4)(8 + 24e2 + 3e4 – 48eė – 12e3ė + 24ė2 + 18e2ė2 – 12eė3 + 3ė4)[1 – (e – ė)2] – 9/ 2× 
               ×ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + 
               + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}(e – ė) – 2× 
              ×[1 – (1 – e2)1/ 2] – 1} + (π/6)(– 3e4 + 9e6 – 9e8 + 3e10 – 4e3ė – 10e5ė + 32e7ė – 18e9ė – 6e2ė2 – 4e4ė2 – 
              – 35e6ė2 + 45e8ė2 – 12eė3 – 16e3ė3 – 60e7ė3 + 39e2ė4 + 25e4ė4 + 45e6ė4 – 18eė5 – 16e3ė5 – 18e5ė5 + 
              + 3e2ė6 + 3e4ė6)ė – 4[1 – (e – ė)2] – 7/ 2 + (π/12)(6e4 – 24e6 + 36e8 – 24e10 + 6e12 + 8e3ė + 18e5ė –  
              – 102e7ė + 118e9ė – 42e11ė + 12e2ė2 + e4ė2 + 88e6ė2 – 227e8ė2 + 126e10ė2 + 24eė3 + 16e3ė3 – 
              – 35e5ė3 + 205e7ė3 – 210e9ė3 – 50ė4 – 138e2ė4 + 48e4ė4 – 70e6ė4 + 210e8ė4 + 182eė5 – 40e3ė5 – 
              – 16e5ė5 – 126e7ė5 – 55ė6 – 4e2ė6 + 17e4ė6 + 42e6ė6 + 9eė7 – 3e3ė7 – 6e5ė7)ė – 4×  
              ×(1 – e2) – 1/ 2[1 – (e – ė)2] – 4 + (5π/12)(10 + 11e2 – 22eė + 11ė2)[1 – (e – ė)2] – 4.  
                                                                                                                                     2 π                                      

5. Expressions for the integrals Ki(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – i dφ,  
                                                                                                                                          0                             
      (i = 1, …, 5) for some specific values of their arguments e(u) and ė(u)     
        

Let us, at first, introduce a useful notation, with a view to shorten (in 
some cases) the writing of the analytical formulas. More specially, we intent 
to denote with the function Z(e,ė) the argument of the logarithmic function, 
which enters both into the intermediate calculations and the final solutions 
for the integrals Ki(e,ė), (i = 1, …, 5). This argument is the same for all i = 
= 1, …, 5, which makes it reasonable to introduce into use one more 
notation into the system of notations, used in the present paper. We stress, 
however, that we shall skip such a shortening of the notations (as we already 
have done until now), if we want to write, as possible, but more tedious, in 
the “most explicit” form the dependence of the expressions on e(u) and ė(u).    
       Therefore, we define that:   
(18)       Z(e,ė) ≡ {2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 +  
               + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
               + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}(e – ė) – 2[1 – (1 – e2)1/ 2] – 1.  

We shall write the above function for two different pairs of its 
arguments, namely: {e, ė = 0} and {e – ė, – ė}. These combinations will 
arise during the further use of the notation formula (18):       
(19)       Z(e,ė = 0) = 2[2 – 3e2 + e4 – 2(1 – e2)3/ 2]e – 2[1 – (1 – e2)1/ 2] – 1,  
(20)       Z(e – ė, – ė) = {2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + 

+ (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}e – 2{1 – [1 – (e –      
– ė)2]1/ 2} – 1. 

       Until now, we have computed analytically Ki(e,ė), (i = 1, …, 5) under 
the condition ė(u) ≠ 0. For i = 2, 3, 4 and 5 the derivative ė(u) of the 
eccentricity e(u) presents as a factor in the denominators of some of the 
summands in these expressions. Therefore, it is not reasonable to calculate 
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Ki(e,0), (i = 2, …, 5) simply setting ė(u) = 0 into the already calculated 
results for this functions, valid for ė(u) ≠ 0. Of course, we may attempt to 
use the L’Hospital’s rule for evaluating of indeterminacies of the type 0/0, 
but this approach (if it works) will probably be too tedious for our 
exposition. We shall use the same computational scheme for evaluating of 
the integrals Ki(e,0), (i = 2, …, 5), as in the previous cases, when ė(u) ≠ 0. 
But the recurrence formulas will now be established for the specific case 
ė(u) = 0. Before to begin with this procedure, we note that the just discussed 
problem, concerning the nullification of ė(u), does not play a role in 
deriving of K1(e,0) from the expression (5) for K1(e,ė). We are able, without 
any contradictions, to set ė(u) = 0, to obtain that:    
(21)      K1(e,0) = 2π(1 – e2) – 1/ 2ln{[2 – 3e2 + e4 – 2(1 – e2)3/ 2 – 2(1 – e2)3/ 2 +  
             + (2 – e2)(1 – e2)]e – 2[1 – (1 – e2)1/ 2] – 1} = 2π(1 – e2) – 1/ 2ln{2[2 – 3e2 + e4 – 2(1 – e2)3/ 2]×  
             ×e – 2[1 – (1 – e2)1/ 2] – 1} = 2π(1 – e2) – 1/ 2lnZ(e,0). 

        It is easily seen that limK1(e,0) → 0, when e(u) approaches zero.  
       Now, we start to the direct evaluation of the integral K2(e,0):  
                                                          2 π                              

(22)       K2(e,0) = ∫(cos2φ + sin2φ)[ln(1 + ecosφ)](1 + ecosφ) – 2 dφ = 
                                                           0                
                                              2 π                                                                                                               2 π 
             = – e – 2∫(1 – e2cos2φ)[ln(1 + ecosφ)](1 + ecosφ) – 2 dφ + e – 2∫[ln(1 + ecosφ)](1 + ecosφ)– 2dφ – 
                                                0                                                                                               0 
                                        2 π               

             – e – 1∫(sinφ)[ln(1 + ecosφ)](1 + ecosφ) – 2 d(1 + ecosφ) =  
                                         0                     
             = – e – 2K1(e,0) + e – 2K0(e) – e – 2K1(e,0) + e – 2K2(e,0) –   
                                        2 π                                                                                                                                            2 π 
             – e – 2∫[(1 + ecosφ) – 1][ln(1 + ecosφ)](1 + ecosφ) – 1 dφ + ∫(1 – cos2φ)(1 + ecosφ) – 2 dφ = 
                                         0                                                                                                     0 
             = e – 2K2(e,0) – 2e – 2K1(e,0) + e – 2K0(e) – e – 2K0(e) + e – 2K1(e,0) + J1(e,0) + 
                                         2 π                   
             + e – 2∫[(1 – e2cos2φ) – 1](1 + ecosφ) – 2 dφ =  
                                          0                   
             = – e – 2J1(e,0) + e – 2K2(e,0) – e – 2K1(e,0) + J1(e,0) + e – 2A1(e,0) – 2π/e2 + e – 2A1(e,0) = 

             = e – 2K2(e,0) – e – 2K1(e,0) + 2e – 2A1(e,0) + (e2 – 1)e – 2J1(e,0) – 2π/e2.  
       This relation gives a possibility to find an analytical solution for the 
unknown function K2(e,0), because the other functions of the eccentricity 
e(u) are already known: K1(e,0) from formula (21), A1(e,0) (formula (20) 
from paper [3]), and J1(e,0) (formula (35) from paper [3]). Taking into 
account these relations, we obtain:   
(23)      K2(e,0) = (1 – e2) – 1[K1(e,0) – 2π(1 – e2) – 1/ 2 + 2π] =  
               = (1 – e2) – 1[2π(1 – e2) – 1/ 2lnZ(e,0) – 2π(1 – e2) – 1/ 2 + 2π] =  
              = 2π(1 – e2) – 3/ 2{ln{2[2 – 3e2 + e4 – 2(1 – e2)3/ 2]e – 2[1 – (1 – e2)1/ 2] – 1} – 1 + (1 – e2)1/ 2}. 
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  We underline that this result does not require the condition ė(u) ≠ 0. 
Just the opposite is true! At the very beginning of the computations, we set 
ė(u) = 0. We shall not write here the proof that the relation (10) for K2(e,ė) 
(derived under the suppositions e(u) ≠ 0, ė(u) ≠ 0 and e(u) – ė(u) ≠ 0) in the 
limit ė(u) → 0 coincides with the above relation (23) for K2(e,0). This 
statement can easily be checked by the means of the L’Hospital’s rule. 
Finally, we note that the transition e(u) → 0 in  the formula (23) leads to a 
vanishing result: K2(0,0) = 0, which corresponds to the expected value from 
the definition (9). Despite of the our skipping of the detailed considerations 
of the behavior of the established relations, under the transitions e(u) → 0, 
ė(u) → 0 and [e(u) – ė(u)] → 0, we nevertheless stress that such 
considerations are important. They give a certainty that the transitions 
through these singular points are continuous. Such a detailed treatment was 
done for the integrals Ai(e,ė), (i = 1, …, 5), Jj(e,ė), (j = 1, …, 4) and Hj(e,ė), 
(j = 1, …, 4) in paper [3]. But with a view to give a shorter description of 
the procedures of solving of the integrals Ki(e,ė), (i = 1, …, 5), we do not 
write out such tedious computations, introducing the use of the L’Hospital’s 
rule for resolving of indeterminacies of the type 0/0. Before to proceed 
further, we emphasize that the above-mentioned remarks, concerning the 
solution of the integral K2(e,ė), are also remaining valid for the solutions of 
the “higher order” integrals Ki(e,ė), (i = 3, 4, 5). We now begin with the 
description of their computation, and we shall not return to the discussion of 
such similar matter later.  
                                                       2 π                              

(24)      K3(e,0) = ∫(cos2φ + sin2φ)[ln(1 + ecosφ)](1 + ecosφ) – 3 dφ =  
                                                        0

 

                                           2 π                                                                                                                                             2 π 
              = – e2∫(1 – e2cos2φ)[ln(1 + ecosφ)](1 + ecosφ) – 3 dφ + e – 2∫[ln(1 + ecosφ)](1 + ecosφ) – 3 dφ – 
                                            0                                                                                                0 
                                           2 π               

              – e – 1∫(sinφ)[ln(1 + ecosφ)](1 + ecosφ) – 3 d(1 + ecosφ) = … =  
                                           0                     
              = [2(1 – e2)] – 1{3K2(e,0) – K1(e,0) – (1 + e2)A2(e,0) + A1(e,0) + (1 – e2)[J2(e,0) – J1(e,0)]} = 
              = [2(1 – e2)] – 1{6π(1 – e2) – 3/ 2[lnZ(e,0) – 1 + (1 – e2)1/ 2] – 2π(1 – e2)(1 – e2) – 3/ 2lnZ(e,0) – 

 – 2π(1 + e2)(1 – e2) – 3/ 2 +2π(1 – e2)(1 – e2) – 3/ 2 + (1 – e2)[π(2 + e2)(1 – e2) – 5/ 2 – 
 – 2π(1 – e2)(1 – e2) – 5/ 2]}.  

In the above equality the symbol “… =”denotes some of the skipped 
intermediate calculations. There are used also the already available solutions 
(23) for K2(e,0) and (21) for K1(e,0). From paper [3] we apply the following 
formulas: (20) for A1(e,0), (21) for A2(e,0), (28) for J1(e,0) and (35) for 
J2(e,0), respectively. Further evaluations lead to the seeking for final 
analytical result for the integral K3(e,ė = 0):   
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(25)      K3(e,0) = (π/2)(1 – e2) – 5/ 2{(4 + 2e2)ln{2[2 – 3e2 + e4 – 2(1 – e2)3/ 2]e – 2[1 – (1 – e2)1/ 2] – 1} – 

              – 6 – e2 + 6(1 – e2)1/ 2}.  
To evaluate analytically the remaining two integrals K4(e,ė = 0) and 

K5(e,ė = 0), we proceed in a very similar way. Here we only sketch these 
calculations.  
(26) K4(e,0) = [3(1 – e2)] – 1{5K3(e,0) – 2K2(e,0) – (1 + e2)A3(e,0) + A2(e,0) +  
                + (1 – e2)[J3(e,0) – J2(e,0)]} = 
                = [3(1 – e2)] – 1{(π/2)(1 – e2)] – 5/ 2[(20 + 10e2)lnZ(e,0) – 30 – 5e2 + 30(1 – e2)1/ 2] –  
                – 4π(1 – e2)(1 – e2) – 5/ 2lnZ(e,0) – 4π(1 – e2)(1 – e2) – 5/ 2[– 1 + (1 – e2)1/ 2] –  
                – π(2 + e2)(1 + e2)(1 – e2) – 5/ 2 + 2π(1 – e2)(1 – e2) – 5/ 2 +  
                + (1 – e2)[π(2 + 3e2)(1 – e2) – 7/ 2 – π(2 + e2)(1 – e2)(1 – e2) – 7/ 2]}.   

As before, we have applied the already computed results: formulas 
(25) and (23) for K3(e,ė = 0) and K2(e,ė = 0), respectively. From paper [3] 
we have used the evaluations (21) for A2(e,0), (22) for A3(e,0), (35) for 
J2(e,0) and, finally, (44) for J3(e,0). Consequently, the simplification of the 
solution (26) may be expressed as follows:  
(27)       K4(e,0) = (π/6)(1 – e2) – 7/ 2[(12 + 18e2)lnZ(e,0) – 22 – 15e2 + (22 + 8e2)(1 – e2)1/ 2] = 
                = (π/6)(1 – e2) – 7/ 2{(12 + 18e2)ln{2[2 – 3e2 + e4 – 2(1 – e2)3/ 2]e – 2[1 – (1 – e2)1/ 2] – 1} – 
                – 22 – 15e2 + (22 + 8e2)(1 – e2)1/ 2}.  

Correspondingly, the integral K5(e,ė = 0) can be computed by means 
of K4(e,0) (formula (27)), K3(e,0) (formula (25)), A3(e,0) (formula (22) 
from paper [3]), A4(e,0) (formula (23) from paper [3]) and J4(e,0) (formula 
(50) from paper [3]).  
(28)     K5(e,0) = [4(1 – e2)] – 1[7K4(e,0) – 3K3(e,0) + (1 – e2)J4(e,0) – 2A4(e,0) + A3(e,0)] = 
             = (π/24)(1 – e2) – 9/ 2[(48 + 144e2 + 18e4)lnZ(e,0) – 100 – 150e2 – 9e4 – (1/2)(12e2 + 3e4) + 
             + (100 + 110e2)(1 – e2)1/ 2].   

          Therefore, the final analytical solution for the integral K5(e,0) is:  
(29)  K5(e,0) = (π/48)(1 – e2) – 9/ 2{(96 + 288e2 + 36e4)ln{2[2 – 3e2 + e4 – 
             – 2(1 – e2)3/ 2]e – 2[1 – (1 – e2)1/ 2] – 1} – 200 – 312e2 – 21e4 + (200 + 220e2)(1 – e2)1/ 2}, 

where we, of course, have used the short-notation definition (19) for the 
function Z(e,0). To conclude the matter, connected with the application of 
the analytical solutions of the integrals of the type Ki(e,ė), (i = 1. …, 5), we 
shall write down in an explicit form some of these expressions (namely, for 
i = 3, 4 and 5), when the two-arguments pair {e, ė} is replaced by {e – ė,  
– ė }. We do not give here the detailed computations, but the only the final 
results, including also the definition (20) for the function Z(e – ė, – ė):   
(30)      K3(e – ė, – ė) = π(2 + e2)(1 – e2) – 5/ 2ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 + 
               + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
               + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}e – 2{1 – [1 – (e – ė)2]1/ 2} – 1} +  
              + π(– e2 + 2e4 – e6 + 4eė – 6e3ė + 2e5ė – 3ė2 + 4e2ė2 – e4ė2)ė – 2(1 – e2) – 5/ 2  + π(e2 – 2e4 + e6 – 4eė + 
              + 7e3ė – 3e5ė – 9e2ė2 + 3e4ė2 + 4eė3 – e3ė3)ė – 2(1 – e2) – 2[1 – (e – ė)2] – 1 /2 + 3π(1 – e2) – 2. 

(31)     K4(e – ė, – ė) = π(2 + 3e2)(1 – e2) – 7/ 2ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 + 
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             + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
             + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}e – 2{1 – [1 – (e – ė)2]1/ 2} – 1} + (π/3)(2e3 – 4e5 + 2e7 –  
             – 9e2ė + 15e4ė – 6e6ė + 18eė2 – 15e3ė2 + 6e5ė2 – 13ė3 + 4e2ė3 – 2e4ė3)ė – 3(1 – e2) – 5/ 2 +   
             + (π/3)(– 2e3 + 6e5 – 6e7 + 2e9 + 9e2ė – 26e4ė + 25e6ė – 8e8ė – 18eė2 + 43e3ė2 –  
             – 37e5ė2 +12e7ė2 – 45e2ė3 + 23e4ė3 – 8e6ė3 + 18eė4 – 5e3ė4 + 2e5ė4)ė – 3(1 – e2) – 3[1 – (e – ė)2] – 1/ 2 + 
             + (π/3)(11 + 4e2)(1 – e2) – 3 + (2π/3)(1 – e2) – 5/ 2.    

(32)      K5(e – ė, – ė) = (π/4)(8 + 24e2 + 3e4)(1 – e2) – 9/ 2ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 + 
             + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
              + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}e – 2{1 – [1 – (e – ė)2]1/ 2} – 1} +  
             + (π/6)(– 3e4 + 9e6 – 9e8 + 3e10 + 16e3ė – 44e5ė + 40e7ė – 12e9ė – 36e2ė2 + 81e4ė2 – 63e6ė2 +  
             + 18e8ė2 + 48eė3 – 48e3ė3 + 42e5ė3 – 12e7ė3 – 25ė4 + 2e2ė4 – 10e4ė4 + 3e6ė4)ė – 4(1 – e2) – 7/ 2 + 
              + (π/12)(6e4 – 24e6 + 36e8 – 24e10 + 6e12 – 32e3ė + 126e5ė – 186e7ė + 122e9ė – 30e11ė + 72e2ė2 – 
             – 269e4ė2 + 382e6ė2 – 245e8ė2 + 60e10ė2 – 96eė3 + 280e3ė3 – 367e5ė3 + 243e7ė3 – 60e9ė3 – 264e2ė4 + 
             + 143e4ė4 – 119e6ė4 + 30e8ė4 +96eė5 – 8e3ė5 + 23e5ė5 – 6e7ė5)ė – 4(1 – e2) – 4[1 – (e – ė)2] – 1/ 2 + 
             + (5π/12)(10 + 11e2)( 1 – e2) – 4.  
  
  6. Final analytical explicit evaluations for the integrals  
                                                                   2 π                     

                   Li(e,ė) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ] – i dφ , (i = 1, 2, 3)   
                                                                 0                          

We have already obtained in the previous paper [4] the final 
analytical expressions for the integrals L0(e), K0(e) and K1(e,ė) (see 
formulas (3), (4) and (5), respectively, into the introduction of the present 
paper).We have also evaluated in an explicit form the integrals Ki(e,ė), (i = 
= 2, …, 5), (see formulas (10), (13), (15) and (17), respectively). This 
circumstance enables us to apply the recurrence relations (formulas (13), 
(12) and (11) from paper [4]), which will be sufficient to write explicitly, as 
functions of e(u) and ė(u) ≡ de(u)/du the unknown functions L1(e,ė), L2(e,ė) 
and L3(e,ė). Strictly speaking, here we do not need to know the full 
analytical solutions of the integrals K4(e,ė) and K5(e,ė), because we 
interrupt the recurrence chain at the integral L3(e,ė), i.e., we need not to 
calculate for our purposes the integrals Li(e,ė) with i ≥ 4. K4(e,ė) and 
K5(e,ė) are evaluated for other reasons. Therefore, we can write, according 
to ((13), paper [4]), that:  
(33)     L1(e,ė) = (e/ė)L0(e) – [(e – ė)/ė]K1(e,ė) = 
             = – 2πeė – 1(1 – e2) – 1/ 2ln{[1 + (1 – e2)1/ 2][2(1 – e2)] – 1} – 2π(e – ė)ė – 1[1 – (e – ė)2] – 1/ 2× 
             ×ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + 
             + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
             + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}(e – ė) – 2[1 – (1 – e2)1/ 2] – 1}.   

In a fully analogous way, we are able to evaluate the other integrals 
L2(e,ė) and L3(e,ė), for which we are seeking for. After some simple but 
tedious algebra, without using the notation (18) for Z(e,ė), we shall give the 
final analytical form for the solutions of L2(e,ė) and L3(e,ė). Taking into 
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account the recurrence relation (12) from paper [4] and the solutions (10) for 
K2(e,ė) and (32) for L1(e,ė), we have:   
(34)     L2(e,ė) = (e/ė)L1(e,ė) – [(e – ė)/ė]K2(e,ė) = 
             = – 2πe2ė – 2(1 – e2) – 1/ 2ln{[1 + (1 – e2)1/ 2][2(1 – e2)] – 1} – 2π(e2 – e4 + 3e3ė – ė2 – 3e2ė2 + eė3)ė – 2×  
             ×[1 – (e – ė)2] – 3/ 2ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + 
             + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}(e – ė) – 2×  
             ×[1 – (1 – e2)1/ 2] – 1} + 2π(e2 – eė)ė – 2[1 – (e – ė)2] – 1/ 2 – 2π(e2 – e4 – 2eė + 2e3ė + ė2 – e2ė2)ė – 2× 
             ×[1 – (e – ė)2] – 1(1 – e2) – 1/ 2 – 2π(e – ė)ė – 1[1 – (e – ė)2] – 1.  

Similarly, the recurrence formula (11) from paper [4], combined 
with the solutions (13) for K3(e,ė) and (34) for L2(e,ė), leads to the 
following result:  
(35)     L3(e,ė) = (e/ė)L2(e,ė) – [(e – ė)/ė]K3(e,ė) = 
             = – 2πe3ė – 3(1 – e2) – 1/ 2ln{[1 + (1 – e2)1/ 2][2(1 – e2)] – 1} – π(2e3 – 4e5 + 2e7 + 10e4ė – 10e6ė – 
             – 5e3ė2 + 20e5ė2 – 2ė3 – 5e2ė3 – 20e4ė3 + 5eė4 + 10e3ė4 – ė5 – 2e2ė5)ė – 3[1 – (e – ė)2] – 5/ 2× 
             ×ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)× 
             ×[1 – (e – ė)2]1/ 2 + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}(e – ė) – 2[1 – (1 – e2)1/ 2] – 1} – 
             – π(3e3 – 6e5 + 3e7 – 3e2ė + 15e4ė – 12e6ė – 3eė2 – 15e3ė2 + 18e5ė2 + 3ė3 + 9e2ė3 – 12e4ė3 – 3eė4 + 
             + 3e3ė4)ė – 3[1 – (e – ė)2] – 2(1 – e2) – 1/ 2 – π(2e2 – 2e4 + eė + 6e3ė – 3ė2 – 6e2ė2 + 2eė3)ė – 2×  
             ×[1 – (e – ė)2] – 2 + π(3e3 – 3e5 – e2ė + 9e4ė – 2eė2 – 9e3ė2 + 3e2ė3)ė – 3[1 – (e – ė)2] – 3/ 2. 

           Consequently, the above solution (35) encloses the considered by us 
system of analytical solutions for the auxiliary integrals Li(e,ė), (i = 0, …, 3) 
(see definitions (1)) and Kj(e,ė), (j = 1, …, 5) (see definitions (2)). As a rule, 
these definite integrals turn out to be complicate expressions of the assumed 
by us independent variables e(u) and ė(u) ≡ de(u)/du. Nevertheless, we are 
enjoyed to establish the explicit form of the solutions. With a preliminary 
optimism, we postpone the problem of the simplification of the expressions, 
where these integrals will enter as auxiliary functions. It is important to 
note, that during the process of derivations, it becomes clear that the 
computed solutions are unique. That is to say, the application of the 
formulas will not lead to bifurcation problems, generated by the established 
solutions itself. Another good characteristic of the above considered 
solutions is that they passage continuously through some suspected peculiar 
points like e(u) = 0, ė(u) = 0, e(u) – ė(u) = 0, etc. This was discussed earlier 
many times, and the answer to the problem was favorable: these peculiar 
points do not cause troubles. Such kind of conclusions are essentially 
proved by the corresponding L’Hospital’s rule for resolving of 
indeterminacies of the type 0/0. Therefore, the established expressions for 
Li(e,ė), (i = 0, …, 3) and Kj(e,ė), (j = 1, …, 5) may be used without troubles 
about these singular points.      
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7. Conclusions     
 

The present paper encloses an investigation associated with an 
analytical solving of several types of definite integrals. They are considered 
to be functions of the eccentricities e(u) and their derivatives ė(u) ≡ 
≡de(u)/du of the particle orbits, moving in the accretion discs with elliptical 
shapes. These integrals were not found solved in the existing mathematical 
handbooks and reference books in forms, which are appropriate for use, 
according to our aspiration to apply them in the theory of elliptical accretion 
flows. More concretely, the integrals, which we have considered both in the 
present investigation, and in the papers [3] and [4], are Li(e,ė), (i = 0, …, 3) 
(defined by formula (1)), Kj(e,ė), (j = 1, …, 5) (defined by formula (2)), 
Ai(e,ė), (i = 1, …, 5) (defined by formula (6)), Jj(e,ė), (j = 1, …, 4) (defined 
by formula (7)) and Hj(e,ė), (j = 1, …, 4) (defined by formula (8)). The 
situation in our case is that the analytical solutions are intended to be set 
into application for resolving of a concrete task. It is connected with the 
specific model of accretion discs [5], and introduces some limitations on the 
variables e(u) and ė(u), which are treated as independent ones. Aside from 
the circumstance that, by definition, ė(u) ≡ de(u)/du. The laters must obey 
three inequalities for all values of the independent variable u ≡ ln(p), where 
p is the focal parameter of the particular particle elliptical orbit). Namely, (i) 
|e(u)| < 1, (ii) |ė(u)| < 1 and (iii) |e(u) – ė(u)| < 1. These restrictions arise, 
because the variable e(u) is considered as an eccentricity and the stationary 
accretion flows in the model of Lyubarskij et al. [5] are a priori, by 
hypothesis, excluding any singular behavior of the accretion disc 
characteristics. This means that the phenomena like the propagation of 
shock waves are not taken into account. Therefore, the above mentioned 
constraints (i) – (iii) are, essentially imposed from physical reasons. Of 
course, to these must be added also the property that all physical 
characteristics in the model of Lyubarskij et al. [5] are described by means 
of real quantities. As a consequence, the integrands into the formulas (1), 
(2), (6), (7) and (8) include only real functions, and the corresponding 
integrals are also real functions on e(u) and ė(u). It has to be mentioned, that 
such a simplified situation may not occur for models other than [5]. For 
example, in the paper of Ogilvie [6] is introduced the notion complex 
eccentricity E(r) (where r is the radius-vector), in order to treat the more 
general case, when the particle orbits of the eccentric accretion discs are not 
sharing a common longitude of periastron. But we are not dealing with this, 
very probably, much more difficult for analytical solving problem. It is 
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enough only to mention that in the model of Ogilvie [6], the dynamical 
equation, governing of the structure of the disc, is, generally speaking, no 
more ordinary differential equation, but particular one.  
       We conclude our remarks, stressing that we have not performed an 
analytical solving of the full mathematical problem, concerning the 
evaluation of the integrals  
Li(e,ė), Kj(e,ė), Ai(e,ė), Jj(e,ė), and Hj(e,ė), (the indices i and j run the 
corresponding values, accepted by us, in the definitions (1), (2), (6), (7) and 
(8)). This is done for some particular cases, satisfying the above discussed 
restriction, imposed on the variables e(u) and ė(u) ≡ de(u)/du from physical 
reasonings. The so established expressions for these integrals (see also 
papers [3] and [4]) are presenting a complete system of solutions, which is 
sufficient for our purposes. It gives a possibility to investigate the behavior 
of some other integrals, which directly enter into the dynamical equation for 
the elliptical accretion discs, described by the model of Lyubarskij et al. [5]. 
For this reason, we have named the former five types of integrals “auxiliary 
integrals”.      
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АНАЛИТИЧНО ПРЕСМЯТАНЕ НА ДВА ИНТЕГРАЛА, 
ВЪЗНИКВАЩИ В ТЕОРИЯТА НА ЕЛИПТИЧНИТЕ АКРЕЦИОННИ 

ДИСКОВЕ. III. РЕШАВАНЕ НА ПЪЛНАТА СИСТЕМА ОТ 
СПОМАГАТЕЛНИ ИНТЕГРАЛИ, СЪДЪРЖАЩИ 

ЛОГАРИТМИЧНИ ФУНКЦИИ В ТЕХНИТЕ ИНТЕГРАНДИ 
 

Д. Димитров 
 

Резюме 
Настоящето изследване затваря започнатите в по-ранните статии 

[3] и [4] аналитични оценки на някои видове определени интеграли. Тези 
решения са неоходими стъпки в посока на разкриването на 
математическата структура на динамичното уравнение, управляващо 
свойствата на стационарните елиптични акреционни дискове, чиито 
апсидни линии на всички орбити лежат върху една и съща линия [5]. 
Въпреки че разглежданата тук задача може да изглежда, на пръв поглед, 
като една чисто математическа такава, има някои ограничения от 
физическо естество върху променливите, влизащи като аргументи в 
интеграндите. В тази статия ние решаваме аналитично следните два 
определени интеграла, включващи в техните числители (като множител) 
логаритмичната функция ln( 1 + ecosφ). Конкретно, ние намираме в явна 
форма решенията на интегралите  
                  2π 
Li(e,ė) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ] – i dφ , (i = 0, …, 3) и Kj(e,ė) ≡ 
     2π     

        0 
≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – j dφ, (j = 1, …, 5).  Тук  ние  сме  използвали  
    0 
следните обозначения. φ е азимуталният ъгъл. Интегрирането по φ от 0 до 
2π означава усреднявяне върху цялата траектория за всяка една частица от 
диска. Всяка такава частица се спуска по спирала към центъра на диска, 
движейки се по (квази-) елиптични орбити с фокални параметри p. На 
тeзи параметри p е позволено да варират за различните елиптични орбити. 
В нашия подход на изчисляване, ние третираме e(u) и ė(u) като 
независими променливи. Физически наложените ограничения (които, до 
известна степен, водят до опростявания на задачите) са |e(u)| < 1, |ė(u)| < 1 
и |e(u) – ė(u)| < 1 за всички допустими значения на u. Тоест, между най-
вътрешната и най-външната орбита на диска. Следователно, установените 
в тази статия аналитични решения за интегралите Li(e,ė), (i = 0, …, 3) и 
Kj(e,ė), (j = 1, …, 5) са, вероятно, не най-общите такива даже в областта на 
реалния анализ. Въпреки това, те са достатъчни за нашата цел да се 
опрости динамичното уравнение. 


